• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Anomalous

- Vertebral malformations
- Cysts / Diverticula
- Cervical spondylomyelopathy (Wobbler)
Vertebral Malformations

• Variety of neurologic symptoms
 ▪ Myelopathy
 ▪ Radiculopathy

• However...
 ▪ VAST majority are incidental findings / clinically insignificant
Vertebral Malformations

• Generally breed-associated
• Exception
 ▪ Mucolipidosis
• Bulldog overrepresented
 ▪ Also...
Vertebral Malformations

- Many different classification systems
 - Stage of development
 - Embryonic
 - Hemivertebrae
 - Wedge vertebrae
 - Butterfly vertebrae
 - Fetal
 - Block vertebrae
 - Articular process hypoplasia
Vertebral Malformations

- Partial unilateral failure of formation (wedge vertebrae)
- Complete unilateral failure of formation (hemivertebra)
- Unilateral failure of segmentation (congenital bar)
- Bilateral failure of segmentation (block vertebra)

Articular Process Hypoplasia

- Hypoplasia or aplasia
- Pugs
Articular Process Hypoplasia

• “Pug Myelopathy”
• Hypoplasia / aplasia of caudal articular facets
 ▪ Thoracolumbar region
• Leads to chronic instability and secondary fibrous band
 ▪ → Constrictive myelopathy

Vertebral Malformations

- Diagnostics
 - Radiography
 - Most are easily identified
 - MRI
 - Cross-sectional analysis
 - Spinal cord compression
 - Other abnormalities
 - Disc
 - Cyst / diverticula
Vertebral Malformations

• Treatment
 ▪ Dependent on...
 • Significance
 • Type
 • Number
 • Severity
 • Stability
Vertebral Malformations

• Treatment
 - Medical management
 • Strict confinement
 • NSAIDs vs. steroids
 • Analgesic therapy
 - Surgery
 • Rarely performed...
Vertebral Malformations

• Surgical Management
 ▪ More common to address secondary disease
 • Block vertebrae
 – Disc
 • Hemivertebrae
 – Cyst / diverticula
Vertebral Malformations

• Surgical Management
 ▪ Simple
 • Dorsal laminectomy
 • Hemilaminectomy
 ▪ Complex
 • Requiring stabilization
“Chewy”

- 4 month old Chihuahua mix
- Weak / wobbly in PL since adoption
“Chewy” MRI
“Chewy”
“Chewy”
Post-op radiographs

Right lateral

VD
Vertebral Malformations

- The 4 Questions
 - **Onset?**
 - Chronic
 - Months to years
 - **Progression?**
 - Slowly progressive
 - **Symmetry?**
 - Usually symmetric
 - **Painful?**
 - No

The only disability in life is a bad attitude.
Spinal Arachnoid Diverticula

• Focal dilations of the subarachnoid space
• Formerly known as cysts
• More common in brain

https://www.researchgate.net/figure/262810151_fig2_Transverse-plane-CT-myelogram-CT-image-showing-the-focalaccumulation-of-contrast-medium
Spinal Arachnoid Diverticula

- Compressive myelopathy
- Most common symptom
 - Proprioceptive ataxia
- Two groups of dogs
 - Cervical
 - Large breed dogs
 - Rottweiler
 - **Thoracolumbar***
 - Frenchies and Pugs
Spinal Arachnoid Diverticula

- Corkscrew tail breeds
- Very common to have concurrent disease adjacent to SAD
Spinal Arachnoid Diverticula

• Diagnostics
 ▪ CT / myelogram?
 ▪ MRI!!

• Diagnosis
 – FLAIR

• Also...
 – Cord changes
 » Edema, gliosis
 – Concurrent diseases
“Francisco”
“Francisco”
Spinal Arachnoid Diverticula

• Treatment
 ▪ Medical management
 • Prednisone (low dose)
 • Omeprazole
 • +/- furosemide, acetazolamide
 ▪ Surgery
 • Laminectomy
 • Durotomy
 • Marsupialization
Spinal Arachnoid Diverticula

- Prognosis
 - Medical therapy
 - Unknown – no studies to date
 - “Guarded”
 - Surgery
 - ~63% - improved
 - ~37% - worsened
Spinal Arachnoid Diverticula

• The 4 Questions
 ▪ Onset?
 • Chronic
 – Months to years
 ▪ Progression?
 • Slowly progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • No
Cervical Spondylomyelopathy

• “Wobbler syndrome”
• Condition of large and giant breed dogs
• Static or dynamic compression
 ▪ Spinal cord
 ▪ Nerve roots
 ▪ → pain and spinal cord dysfunction
• Causes
 ▪ Genetic, congenital, conformational, nutritional
Cervical Spondylomyelopathy

• Breeds
 ▪ Great Dane, Doberman, Basset

• Pathogenesis
 ▪ Multifactorial
 ▪ Canal stenosis from disc, ligament, joint capsule, bone, vertebral instability, among others...
Cervical Spondylomyelopathy

- Two forms
 - Doberman
 - Older dogs (6.8 years)
 - Caudal cervical
 - Disc-associated
 - Great Dane
 - Younger dogs (3.8 years)
 - Cranial-to-mid cervical
 - Osseous-associated
Cervical Spondylomyelopathy

- Basset hound
 - Unique form of disease
 - JVIM, 2012, De Decker et. Al
 - Dorsal lamina & spinous process hypertrophy
 - → leads to ligamentum flavum hypertrophy
Basset Spondylomyelopathy
Basset Spondylomyelopathy
“George” – 5 mo Basset Hound
Cervical Spondylomyelopathy

• Diagnostics
 ▪ CT / Myelography
 ▪ MRI
 • Diagnosis
 • Dynamic vs. static
 • Cord changes***
“Fitz” – 2 yo MN Great Dane
Cervical Spondylomyelopathy

• Treatment

- Medical
 - Prednisone
 - Gabapentin
 - Controlled exercise

- Surgery
 - Dependent on type, extent, severity
 - Ventral slot, dorsal laminectomy
 - +/- stabilization
 - Disc replacement??

Cervical Spondylomyelopathy

• The 4 Questions
 ▪ Onset?
 • Chronic, Acute-on-Chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • Osseous-associated
 – 50/50
 • Disc-associated
 – Yes!
• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Neoplasia

- Primary
 - Arising from the spinal cord or meninges
- Secondary
 - Adjacent
Primary SC Neoplasia

- Can be broken into 2 categories
 - Intramedullary
 - Intradural, extramedullary

http://sevneurology.com/lupa-spinal-tumor/
Intramedullary SC Neoplasia

- Uncommon
 - ~15% of spinal cord tumors
- 2/3 are primary
 - Neuroepithelial
 - Glial cells
 - Ependyma
- 1/3 are secondary
 - Metastatic
Intramedullary SC Neoplasia

- **Primary tumors**
 - More common...
 - Young dogs
 - Cervical spinal cord
- **Secondary**
 - More common...
 - Older dogs
 - Thoracolumbar spinal cord
Intramedullary SC Neoplasia

• Primary tumors
 ▪ Mean age is 5.9 years
 ▪ Most common is ependymoma
 • Followed by
 – Astrocytoma
 – Oligodendroglioma
Intramedullary SC Neoplasia

- Secondary / metastatic tumors
 - Mean age is 10.8 years
 - Most common...
 - Hemangiosarcoma
 - TCC
 - Prostatic carcinoma
 - LSA?
Intramedullary Neoplasia

• The 4 Questions
 ▪ Onset?
 • Acute-to-chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Often symmetric
 ▪ Painful?
 • Nope!!
Intradural, Extramedullary

A: Normal
B: Intramedullary
C: Intradural-extramedullary
D: Extradural

Intradural, Extramedullary

• Meningioma
 - Most common in dogs
 - Arises from arachnoid granulation of meninges
 - Locations
 - Cervical most common
 - Grades
 - I-III
 - Types
 - Numerous!!
Meningothelial Meningioma

Microcystic Meningioma

Meningioma

• Treatment
 ▪ Palliative care
 ▪ Oral chemotherapy
 • Hydroxyurea
 ▪ Surgery alone
 • 1410-1440 days (Levy et. al 1997)
 • 19 months (Petersen et. al 2008)
 ▪ Surgery + Radiation
 • ??? Likely longer…
Intradural, Extramedullary

• Nerve sheath tumors
 ▪ Types
 • Schwannomas
 • Neurofibromas
 • Neurofibrosarcomas
Nerve Sheath Tumors
Nerve Sheath Tumors

• Treatment
 ▪ Palliative care
 ▪ Radiation
 • 371 ± 30 days
 ▪ Surgery alone
 • 6-9 months
 ▪ Surgery + Radiation
 • ??? Likely longer...
Nephroblastoma

• “Thoracolumbar tumor of young dogs”
• Embryonal tumors of the kidneys
• Neoplastic transformation of blastemal cells
 ▪ Retroperitoneal → primary renal tumor
 ▪ Within dura → spinal tumor
• T10-L3
• GSD, Golden retrievers
Nephroblastoma

• Age at onset
 ▪ 5-48 months
 • Median 14 months
 ▪ Progressive symptoms
 ▪ T3-L3
 ▪ Paraparesis / ataxia to paraplegia
Nephroblastoma
Nephroblastoma

• **Treatment**
 - Medical management
 - Surgery
 - Dorsal / hemilaminectomy
 - Durotomy

• **Prognosis**
 - Poor
 - MST 30 days in all dogs
 - Surgical resection
 - MST 70.5 days
Extradural Tumors

- Vertebral tumors
 - Osteosarcoma
 - Fibrosarcoma
 - Chondrosarcoma
 - Multiple myeloma
 - Lymphoma
 - Metastatic...
Extradural Tumors

• Other sites
 ▪ Soft tissue
 ▪ Abdominal
 ▪ Retroperitoneal
 ▪ Esophageal
ID-EM and Extradural Tumors

- The 4 Questions
 - Onset?
 - Acute-to-chronic
 - Progression?
 - Progressive
 - Symmetry?
 - ED \rightarrow Symmetric
 - ID-EM \rightarrow Asymmetric
 - Painful?
 - Most are...
 - Meninges, nerve, muscle
• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Degenerative

- Intervertebral disc disease (IVDD)
- Degenerative myelopathy (DM)
Max,
7 yr, MN Dachshund
Max – The Situation

• 2 days ago – sudden onset not walking, painful
• 1 day ago – pcDVM - paralyzed and no deep pain
• Your exam – quite the same

• Diagnosis? Prognosis?
Max – The truth

- Came in through ER (~8PM)
 - Plegic, DPP (NEGATIVE)
- Advised to wait til AM to have MRI

- 8AM
 - Exam unchanged.
Outcome

• Left hemilaminectomy at T12-T13 with removal of massive amount of paste-like disc

• Grossly normal spinal cord

• Weakly ambulatory at discharge 2 ½ days later
<table>
<thead>
<tr>
<th>Deep Pain Negative & Hemilaminectomy</th>
<th>Deep Pain Positive & Hemilaminectomy</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2 Signal Changes</td>
<td>T2 Signal Changes</td>
</tr>
<tr>
<td>Number Recovered</td>
<td>Number Recovered</td>
</tr>
<tr>
<td>Success Rate</td>
<td>Success Rate</td>
</tr>
<tr>
<td>None noted</td>
<td>None noted</td>
</tr>
<tr>
<td>13/13</td>
<td>31/31</td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
</tr>
<tr>
<td>< 3x length L2</td>
<td>< 3x length L2</td>
</tr>
<tr>
<td>4/6</td>
<td>11/12</td>
</tr>
<tr>
<td>66%</td>
<td>92%</td>
</tr>
<tr>
<td>> 3 x length L2</td>
<td>> 3 x length L2</td>
</tr>
<tr>
<td>1/10</td>
<td>2/5</td>
</tr>
<tr>
<td>10%</td>
<td>40%</td>
</tr>
<tr>
<td>Totals</td>
<td>Totals</td>
</tr>
<tr>
<td>18/29</td>
<td>44/48</td>
</tr>
<tr>
<td>62%</td>
<td>92%</td>
</tr>
</tbody>
</table>

- MRI findings best predictor of outcome in paraplegic dogs
- Generally success rates are 92% and 62%, in DPP+, DPP – respectively

MRI as predictor of outcome

• Allows for evaluation of SC health

• Without MRI
 ▪ Prognoses range from 10-100%
 • “50/50”

• MRI allows for...
 ▪ Establishment of diagnosis
 ▪ Accurate prognosis!
Why wait??

- Our beliefs
 - Diagnostic and prognostic value of MRI is worth the wait
 - CT / myelogram??
 - Little harm in waiting

- 2 components of injury caused by disc rupture
 - 1) Concussive internal injury sustained at moment of impact
 - Most important / fate is sealed at time of rupture
 - 2) Ongoing compression
Why MRI for Type I Disc Disease?

- MRI consistently superior to myelography for determining lesion localization and lateralization (Bos)

- Correlation between MRI and surgical findings is 100% for lesion localization and lateralization (Besalti, Naude)

- Superior to deep pain status in determining outcome in paraplegic dogs

Bos AS. University of Guelph. 2008: 113-49
No harm in waiting...

- JAVMA 2016
 - Jeffery et. al
- Goals of study
 - Identify factors associated with recovery of locomotion
- 78 dogs that underwent spinal surgery for IVDD
 - Iowa State, TAMU, UK
• Results
 ■ No evidence that prognosis for recovery of ambulation was related to time from onset of non-ambulatory state or loss of DPP

• Conclusion
 ■ “Immediacy of surgical treatment had no apparent association with outcome”
 ■ Rather, the prognosis strongly influenced by nature of initiating injury
Further Evidence...

- **JAVMA 2003**
 - *Olby et. al*
 - Study on spinal trauma
 - Including IVDD, HBC, etc.
 - Outcome was not associated with duration of paraplegia
 - Additionally, 0% of DPP(-) dogs recovered that had suffered “trauma” (fracture, subluxation, etc.)
Further Evidence...

• JSAP 1999
 ▪ Scott, McKee
 ▪ No statistical significance to show duration of loss of DPP impacted the prognosis

• JAVMA 2005
 ▪ Ito et. al
 ▪ Duration of clinical signs
 • Not associated with outcome
However….

• We do still recommend prompt establishment of diagnosis and prognosis
• Surgical intervention (if indicated)
 ▪ Sooner rather than later.
Type I Disc Disease
Intervertebral Disc Degeneration

Type I - Breeds

• Overall prevalence = 2% (Bray, 1998)
• Dachshunds (20%), Pekingese, beagle, cocker
Type I – Age

- Chondrodystrophic: 3-7 years
- Non-chondrodystrophic: 6-8 years
 - Large breed dogs: mixed, German Shepherd, Labrador, Rottweiler, Dalmatian, Doberman
Surgery vs. Medical Management?

- In general with an isolated disc rupture...
 - **Surgery**
 - Prognosis with surgery is >95%
 - Quicker recovery
 - Low recurrence with fenestration
 - ~8%
 - **Medical management**
 - Fair prognosis
 - Recurrence rates
 - 30-50%
• What are we trying to accomplish?
• Rest is key!!!!
 ▪ All medically managed cases will be more likely to fail if not rested.
• So, rest (not medication) is more important!
NSAIDS > Steroids

- NSAID therapy associated with higher satisfaction (better pain control, fewer side effects) via questionnaire (Levine)
- Administration of steroid is associated with higher rate of GI and urinary complications causing increased hospital stay
- NSAIDS lower recurrence rate than prednisone (Mann)
- Steroids impair healing (annulus)

Medical

• My preference
 - NSAID
 • Meloxicam, Carprofen
 - Gabapentin
 - Tramadol
 - Muscle relaxer

• Other
 - Urinary status
Surgery

• Best if done sooner...
• If delayed
 ■ >2 weeks
 ■ Prognosis could worsen
 ■ Why?
 • Disc material analogy
 • If delayed...
 – Adhered to dura, vessels
 – More challenging
 – More dangerous
Type 1 Disc Summary

- Not as time sensitive as once thought.
 - Down ≠ Down n’ Out
- Recommend referral in all dogs with suspected disc disease
 - Establish diagnosis and PROGNOSIS
- Educate owners of risks associated with medical management
 - Recurrence
 - Surgery for chronic discs
Type 1 Disc

• The 4 Questions
 ▪ Onset?
 • Peracute-to-acute
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Often subtly asymmetric
 ▪ Painful?
 • Yes!
Disc Disease – Type 2

• Signalment
 - Large breed dogs
 - 6-8 years
 - GSD, Lab, Golden
Disease Physiology

- Disc degeneration
- Fibrous form of metaplasia
 - nucleus pulposus replaced with fibrocartilage
 - weakening of the dorsal annulus
 - protrusion, bulging of annulus
Type 2 - Signs / Progression

• Lumbosacral (L7-S1) disc protrusions
 • Slow to rise / sit
 • Paraparesis
 • Poor reflexes
 • Incontinence
 • Tail abnormalities
 • Pain

• Low cervical disc protrusions (Disc associated Wobbler’s syndrome or DAWS)
 • Tetraparesis
 • Tetra-ataxia
 • Pain
Surgery and L7-S1 Type II Disc

- Dorsal laminectomy with fenestration
- 131 cases, GSD, painful / reluctant to jump, rise, climb
 - 93% improved, 17% recurrence rate (Danielsson)
- 69 cases, various grades, 78% good outcome (De Risio)

Urinary or fecal incontinence has a worse prognosis
Chronic urinary incontinence predicts poor outcome

DO NOT confuse with orthopedic disease and wait to address the problem until incontinent

Type 2 Disc

• The 4 Questions
 ▪ Onset?
 • Chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • Yes
IVDD in Cats??

- Yes!
- Far less common
- Older
- Lumbar disc disease
 - L4-L5
- Type 1 > Type 2
- Outcome similar to dogs
“Amy” – 11 yo FS Balinese
Degenerative Myelopathy

- First described in 1973
 - Non-specific degeneration
- Most dogs in initial reports were GSD
- However, common in several other breeds
 - Overall prevalence of 0.19%
Degenerative Myelopathy

• Cause
 ▪ Mutation in superoxide dismutase 1 gene
 • SOD1
 • Antioxidant / free radical scavenger
 ▪ Amyotrophic lateral sclerosis
 • ALS / Lou Gehrig’s disease
 • Differences
 – Neuron vs. axon
Degenerative Myelopathy

- Progressive disease in older dogs
 - 8-14 years
- Large breed dogs
 - GSD, Boxer, CBR
 - Mean age of 9 yo
- PWC
 - Mean age of 11 yo.
Degenerative Myelopathy

• Clinical Progression
 ▪ Spectrum of symptoms
 • Proprioceptive ataxia, paraparesis
 – T3-L3 spinal cord segments
 • Progress to non-ambulatory state (6-20 months)
 – LMN paraplegia
 – → tetraplegia
 – → brainstem signs
Degenerative Myelopathy

• Antemortem Diagnostics
 ▪ MRI
 • Diagnosis of exclusion / presumptive diagnosis
 – Normal MRI
 – Cord atrophy
 ▪ CSF
 • Normal
 • High protein
Degenerative Myelopathy

• Genetic test
 ▪ Mizzou
 ▪ OFA

• Samples
 ▪ Cheek swab
 ▪ Whole blood

• Results

G/G – Normal
A/G – Carrier
A/A – Affected
Degenerative Myelopathy

• Treatment?
 ▪ No definitive treatment
 ▪ Supportive care
 • Exercise/physical therapy
 • Vitamin supplementation?
 ▪ Good nutrition
 ▪ Weight control
Degenerative Myelopathy

- The 4 Questions
 - Onset?
 - Chronic!
 - Progression?
 - Progressive
 - Symmetry?
 - Often symmetric
 - Painful?
 - No.
Take Home Points

• MRI is the best diagnostic modality to evaluate spinal cord health, determine an accurate prognosis and to plan appropriate therapy
• Not everything is a disc!!!
References

- Dolera M1, Malfassi L1, Bianchi C1, Carrara N1, Finesso S1, Marcarini S1, Mazza G1, Pavesi S1, Sala M1, Urso G1,2. Frameless stereotactic volumetric modulated arc radiotherapy of brachial plexus tumours in dogs: 10 cases. \textit{Br J Radiol.} 2017 Jan;90(1069).
References

Any Questions??