Spinal Cord Diseases

Part 2

Casey P. Neary, DVM, DACVIM (Neurology)
Neurology/Neurosurgery
8/20/17
• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Anomalous

- Vertebral malformations
- Cysts / Diverticula
- Cervical spondylomyelopathy (Wobbler)
Vertebral Malformations

- Variety of neurologic symptoms
 - Myelopathy
 - Radiculopathy

- However...
 - VAST majority are incidental findings / clinically insignificant
Vertebral Malformations

- Generally breed-associated
- Exception
 - Mucolipidosis
- Bulldog overrepresented
 - Also...
Vertebral Malformations

• Many different classification systems
 ▪ Stage of development
 • Embryonic
 – Hemivertebrae
 – Wedge vertebrae
 – Butterfly vertebrae
 • Fetal
 – Block vertebrae
 – Articular process hypoplasia
Articular Process Hypoplasia

• Hypoplasia or aplasia
• Pugs
Articular Process Hypoplasia

• “Pug Myelopathy”
• Hypoplasia / aplasia of caudal articular facets
 ▪ Thoracolumbar region
• Leads to chronic instability and secondary fibrous band
 ▪ → Constrictive myelopathy

Vertebral Malformations

• Diagnostics
 - Radiography
 • Most are easily identified
 - MRI
 • Cross-sectional analysis
 • Spinal cord compression
 • Other abnormalities
 – Disc
 – Cyst / diverticula
Vertebral Malformations

- Treatment
 - Dependent on...
 - Significance
 - Type
 - Number
 - Severity
 - Stability
Vertebral Malformations

• Treatment
 ▪ Medical management
 • Strict confinement
 • NSAIDs vs. steroids
 • Analgesic therapy
 ▪ Surgery
 • Rarely performed...
Vertebral Malformations

- Surgical Management
 - More common to address secondary disease
 - Block vertebrae
 - Disc
 - Hemivertebrae
 - Cyst / diverticula
Vertebral Malformations

• Surgical Management
 ▪ Simple
 • Dorsal laminectomy
 • Hemilaminectomy
 ▪ Complex
 • Requiring stabilization
“Chewy”

- 4 month old Chihuahua mix
- Weak / wobbly in PL since adoption
“Chewy”
“Chewy” MRI
“Chewy” CT
“Chewy”
Chewy’s 3D model
“Chewy”
Post-op radiographs

Right lateral

VD
Vertebral Malformations

- **The 4 Questions**
 - **Onset?**
 - Chronic
 - Months to years
 - **Progression?**
 - Slowly progressive
 - **Symmetry?**
 - Usually symmetric
 - **Painful?**
 - No
Spinal Arachnoid Diverticula

- Focal dilations of the subarachnoid space
- Formerly known as cysts
- More common in brain
Spinal Arachnoid Diverticula

• Compressive myelopathy
• Most common symptom
 ▪ Proprioceptive ataxia
• Two groups of dogs
 ▪ Cervical
 • Large breed dogs
 – Rottweiler
 ▪ Thoracolumbar***
 • Frenchies and Pugs
Spinal Arachnoid Diverticula

- Corkscrew tail breeds
- Very common to have concurrent disease adjacent to SAD
Spinal Arachnoid Diverticula

• Diagnostics
 ▪ CT / myelogram?
 ▪ MRI!!

• Diagnosis
 – FLAIR

• Also...
 – Cord changes
 » Edema,
 gliosis
 – Concurrent
diseases
“Francisco”
“Francisco”
Spinal Arachnoid Diverticula

- Treatment
 - Medical management
 - Prednisone (low dose)
 - Omeprazole
 - +/- furosemide, acetazolamide
 - Surgery
 - Laminectomy
 - Durotomy
 - Marsupialization
Spinal Arachnoid Diverticula

• Prognosis
 ▪ Medical therapy
 • Unknown – no studies to date
 • “Guarded”
 ▪ Surgery
 • ~63% - improved
 • ~37% - worsened
Spinal Arachnoid Diverticula

• **The 4 Questions**
 - **Onset?**
 - Chronic
 - Months to years
 - **Progression?**
 - Slowly progressive
 - **Symmetry?**
 - Usually symmetric
 - **Painful?**
 - No
Cervical Spondylomyelopathy

• “Wobbler syndrome”
• Condition of large and giant breed dogs
• Static or dynamic compression
 ▪ Spinal cord
 ▪ Nerve roots
 ▪ → pain and spinal cord dysfunction
• Causes
 ▪ Genetic, congenital, conformational, nutritional
Cervical Spondylomyelopathy

• Breeds
 ▪ Great Dane, Doberman, Basset

• Pathogenesis
 ▪ Multifactorial
 ▪ Canal stenosis from disc, ligament, joint capsule, bone, vertebral instability, among others...
Cervical Spondylomyelopathy

- Two forms
 - Doberman
 - Older dogs (6.8 years)
 - Caudal cervical
 - Disc-associated
 - Great Dane
 - Younger dogs (3.8 years)
 - Cranial-to-mid cervical
 - Osseous-associated
Cervical Spondylomyelopathy

• Basset hound
 ▪ Unique form of disease
 ▪ JVIM, 2012, De Decker et al.
 ▪ Dorsal lamina & spinous process hypertrophy
 ▪ \rightarrow leads to ligamentum flavum hypertrophy
Basset Spondylomyelopathy
Basset Spondylomyelopathy
“George” – 5 mo Basset Hound
Cervical Spondylomyelopathy

- **Diagnostics**
 - CT / Myelography
 - MRI
 - Diagnosis
 - Dynamic vs. static
 - Cord changes***

[Image: MRI scan showing cervical vertebrae labeled as C5, C6, and C7.]
“Fitz” – 2 yo MN Great Dane

C2-C3

C5-C6
Cervical Spondylomyelopathy

- Treatment

- Medical
 - Prednisone
 - Gabapentin
 - Controlled exercise

- Surgery
 - Dependent on type, extent, severity
 - Ventral slot, dorsal laminectomy
 - +/- stabilization
 - Disc replacement??

Cervical Spondylomyelopathy

• The 4 Questions
 ▪ Onset?
 • Chronic, Acute-on-Chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • Osseous-associated
 – 50/50
 • Disc-associated
 – Yes!
• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Neoplasia

- Primary
 - Arising from the spinal cord or meninges

- Secondary
 - Adjacent

- Intramedullary
 - Intradural, Extramedullary

- Extradural
Primary SC Neoplasia

- Can be broken into 2 categories
 - Intramedullary
 - Intradural, extramedullary

http://sevneurology.com/lupa-spinal-tumor/
Intramedullary SC Neoplasia

• Uncommon
 ▪ ~15% of spinal cord tumors

• 2/3 are primary
 ▪ Neuroepithelial
 • Glial cells
 • Ependyma

• 1/3 are secondary
 ▪ Metastatic
Intramedullary SC Neoplasia

- **Primary tumors**
 - More common...
 - Young dogs
 - Cervical spinal cord

- **Secondary**
 - More common...
 - Older dogs
 - Thoracolumbar spinal cord
Intramedullary SC Neoplasia

• **Primary tumors**
 - Mean age is 5.9 years
 - Most common is ependymoma
 • Followed by
 – Astrocytoma
 – Oligodendroglioma
Intramedullary SC Neoplasia

- Secondary / metastatic tumors
 - Mean age is 10.8 years
 - Most common...
 - Hemangiosarcoma
 - TCC
 - Prostatic carcinoma
 - LSA?
Intramedullary Neoplasia

• The 4 Questions
 ▪ Onset?
 • Acute-to-chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Often symmetric
 ▪ Painful?
 • Nope!!
Intradural, Extramedullary

Intradural, Extramedullary

- **Meningioma**
 - Most common in dogs
 - Arises from arachnoid granulation of meninges
 - Locations
 - Cervical most common
 - Grades
 - I-III
 - Types
 - Numerous!!
Transitional Meningioma

Angiomatous Meningioma

Microcystic Meningioma
Meningioma

- **Treatment**
 - Palliative care
 - Oral chemotherapy
 - Hydroxyurea
 - Surgery alone
 - 1410-1440 days (Levy et. al 1997)
 - 19 months (Petersen et. al 2008)
 - Surgery + Radiation
 - ??? Likely longer...
Intradural, Extramedullary

• Nerve sheath tumors
 ▪ Types
 • Schwannomas
 • Neurofibromas
 • Neurofibrosarcomas
Nerve Sheath Tumors
Nerve Sheath Tumors

• Treatment
 ▪ Palliative care
 ▪ Radiation
 • 371 ± 30 days
 ▪ Surgery alone
 • 6-9 months
 ▪ Surgery + Radiation
 • ??? Likely longer…
Nephroblastoma

• “Thoracolumbar tumor of young dogs”
• Embryonal tumors of the kidneys
• Neoplastic transformation of blastemal cells
 ▪ Retroperitoneal → primary renal tumor
 ▪ Within dura → spinal tumor
• T10-L3
• GSD, Golden retrievers
Nephroblastoma

• Age at onset
 ▪ 5-48 months
 • Median 14 months
• Progressive symptoms
 ▪ T3-L3
 ▪ Paraparesis / ataxia to paraplegia
Nephroblastoma
Nephroblastoma

• Treatment
 ▪ Medical management
 ▪ Surgery
 • Dorsal / hemilaminectomy
 • Durotomy

• Prognosis
 ▪ Poor
 • MST 30 days in all dogs
 • Surgical resection
 – MST 70.5 days
Extradural Tumors

• Vertebral tumors
 ▪ Osteosarcoma
 ▪ Fibrosarcoma
 ▪ Chondrosarcoma
 ▪ Multiple myeloma
 ▪ Lymphoma
 ▪ Metastatic...
Extradural Tumors

• Other sites
 ▪ Soft tissue
 ▪ Abdominal
 ▪ Retroperitoneal
 ▪ Esophageal
ID-EM and Extradural Tumors

- The 4 Questions
 - Onset?
 - Acute-to-chronic
 - Progression?
 - Progressive
 - Symmetry?
 - ED → Symmetric
 - ID-EM → Asymmetric
 - Painful?
 - Most are...
 - Meninges, nerve, muscle
• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Degenerative

- Intervertebral disc disease (IVDD)
- Degenerative myelopathy (DM)
Max,
7 yr, MN Dachshund
Max – The Situation

- 2 days ago – sudden onset not walking, painful
- 1 day ago – pcDVM - paralyzed and no deep pain
- Your exam – quite the same

- Diagnosis? Prognosis?
Max – The truth

- Came in through ER (~8PM)
 - Plegic, DPP (NEGATIVE)
- Advised to wait til AM to have MRI

- 8AM
 - Exam unchanged.
Outcome

- Left hemilaminectomy at T12-T13 with removal of massive amount of paste-like disc
- Grossly normal spinal cord
- Weakly ambulatory at discharge 2 ½ days later
Deep Pain Negative & Hemilaminectomy

<table>
<thead>
<tr>
<th>T2 Signal Changes</th>
<th>Number Recovered</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None noted</td>
<td>13/13</td>
<td>100%</td>
</tr>
<tr>
<td>< 3x length L2</td>
<td>4/6</td>
<td>66%</td>
</tr>
<tr>
<td>> 3 x length L2</td>
<td>1/10</td>
<td>10%</td>
</tr>
<tr>
<td>Totals</td>
<td>18/29</td>
<td>62%</td>
</tr>
</tbody>
</table>

Deep Pain Positive & Hemilaminectomy

<table>
<thead>
<tr>
<th>T2 Signal Changes</th>
<th>Number Recovered</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None noted</td>
<td>31/31</td>
<td>100%</td>
</tr>
<tr>
<td>< 3x length L2</td>
<td>11/12</td>
<td>92%</td>
</tr>
<tr>
<td>> 3 x length L2</td>
<td>2/5</td>
<td>40%</td>
</tr>
<tr>
<td>Totals</td>
<td>44/48</td>
<td>92%</td>
</tr>
</tbody>
</table>

• MRI findings best predictor of outcome in paraplegic dogs

• Generally success rates are 92% and 62%, in DPP+, DPP – respectively

MRI as predictor of outcome

- Allows for evaluation of SC health
- Without MRI
 - Prognoses range from 10-100%
 - “50/50”
- MRI allows for...
 - Establishment of diagnosis
 - Accurate prognosis!
Why wait??

• Our beliefs
 ▪ Diagnostic and prognostic value of MRI is worth the wait
 ▪ CT / myelogram??
 ▪ Little harm in waiting

• 2 components of injury caused by disc rupture
 ▪ 1) Concussive internal injury sustained at moment of impact
 • Most important / fate is sealed at time of rupture
 ▪ 2) Ongoing compression
Why MRI for Type I Disc Disease?

• MRI consistently superior to myelography for determining lesion localization and lateralization (Bos)

• Correlation between MRI and surgical findings is 100% for lesion localization and lateralization (Besalti, Naude)

• Superior to deep pain status in determining outcome in paraplegic dogs

Bos AS. University of Guelph. 2008: 113-49
No harm in waiting...

- **JAVMA 2016**
 - *Jeffery et. al*

- **Goals of study**
 - Identify factors associated with recovery of locomotion

- **78 dogs that underwent spinal surgery for IVDD**
 - Iowa State, TAMU, UK
• Results
 ▪ No evidence that prognosis for recovery of ambulation was related to time from onset of non-ambulatory state or loss of DPP

• Conclusion
 ▪ “Immediacy of surgical treatment had no apparent association with outcome”
 ▪ Rather, the prognosis strongly influenced by nature of initiating injury
Further Evidence...

- JAVMA 2003
 - *Olby et. al*
 - Study on spinal trauma
 - Including IVDD, HBC, etc.
 - Outcome was not associated with duration of paraplegia
 - Additionally, 0% of DPP(-) dogs recovered that had suffered “trauma” (fracture, subluxation, etc.)
Further Evidence...

- **JSAP 1999**
 - *Scott, McKee*
 - No statistical significance to show duration of loss of DPP impacted the prognosis

- **JAVMA 2005**
 - *Ito et. al*
 - Duration of clinical signs
 - Not associated with outcome
However....

• We do still recommend prompt establishment of diagnosis and prognosis
• Surgical intervention (if indicated)
 ▣ Sooner rather than later.
Type I Disc Disease
Intervertebral Disc Degeneration

Type I - Breeds

- Overall prevalence = 2% (Bray, 1998)
- Dachshunds (20%), Pekingese, beagle, cocker
Type I – Age

• Chondrodystrophic: 3-7 years
• Non-chondrodystrophic: 6-8 years
 - Large breed dogs: mixed, German Shepherd, Labrador, Rottweiler, Dalmatian, Doberman
Surgery vs. Medical Management?

- In general with an isolated disc rupture...
 - Surgery
 - Prognosis with surgery is >95%
 - Quicker recovery
 - Low recurrence with fenestration
 - ~8%
 - Medical management
 - Fair prognosis
 - Recurrence rates
 - 30-50%
Medical

• What are we trying to accomplish?
• Rest is key!!!!
 ▪ All medically managed cases will be more likely to fail if not rested.
• So, rest (not medication) is more important!
NSAIDS > Steroids

• NSAID therapy associated with higher satisfaction (better pain control, fewer side effects) via questionnaire (Levine)
• Administration of steroid is associated with higher rate of GI and urinary complications causing increased hospital stay
• NSAIDS lower recurrence rate than prednisone (Mann)
• Steroids impair healing (annulus)

Medical

• My preference
 ▪ NSAID
 • Meloxicam, Carprofen
 ▪ Gabapentin
 ▪ Tramadol
 ▪ Muscle relaxer

• Other
 ▪ Urinary status
Surgery

• Best if done sooner...
• If delayed
 ▪ >2 weeks
 ▪ Prognosis could worsen
 ▪ Why?
 • Disc material analogy
 • If delayed...
 – Adhered to dura, vessels
 – More challenging
 – More dangerous
Type 1 Disc Summary

• Not as time sensitive as once thought.
 ▪ Down ≠ Down n’ Out

• Recommend referral in all dogs with suspected disc disease
 ▪ Establish diagnosis and PROGNOSIS

• Educate owners of risks associated with medical management
 ▪ Recurrence
 ▪ Surgery for chronic discs
Type 1 Disc

- **The 4 Questions**
 - **Onset?**
 - Peracute-to-acute
 - **Progression?**
 - Progressive
 - **Symmetry?**
 - Often subtly asymmetric
 - **Painful?**
 - Yes!
Disc Disease – Type 2

• Signalment
 ▪ Large breed dogs
 ▪ 6-8 years
 ▪ GSD, Lab, Golden
Disease Physiology

- Disc degeneration
- Fibrous form of metaplasia
 - nucleus pulposus replaced with fibrocartilage
 - weakening of the dorsal annulus
 - protrusion, bulging of annulus
Type 2 - Signs / Progression

- Lumbosacral (L7-S1) disc protrusions
 - Slow to rise / sit
 - Paraparesis
 - Poor reflexes
 - Incontinence
 - Tail abnormalities
 - Pain

- Low cervical disc protrusions (Disc associated Wobbler’s syndrome or DAWS)
 - Tetraparesis
 - Tetra-ataxia
 - Pain
Surgery and L7-S1 Type II Disc

• Dorsal laminectomy with fenestration
 • 131 cases, GSD, painful / reluctant to jump, rise, climb stairs, 93% improved, 17% recurrence rate (Danielsson)
 • 69 cases, various grades, 78% good outcome (De Risio)
- Urinary or fecal incontinence has a worse prognosis
- Chronic urinary incontinence predicts poor outcome

Do NOT confuse with orthopedic disease and wait to address the problem until incontinent

Type 2 Disc

• The 4 Questions
 ▪ Onset?
 • Chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • Yes
IVDD in Cats??

- Yes!
- Far less common
- Older
- Lumbar disc disease
 - L4-L5
- Type 1 > Type 2
- Outcome similar to dogs
“Amy” – 11 yo FS Balinese
Degenerative Myelopathy

- First described in 1973
 - Non-specific degeneration
- Most dogs in initial reports were GSD
- However, common in several other breeds
 - Overall prevalence of 0.19%
Degenerative Myelopathy

• Cause
 ▪ Mutation in superoxide dismutase 1 gene
 • SOD1
 • Antioxidant / free radical scavenger
 ▪ Amyotrophic lateral sclerosis
 • ALS / Lou Gehrig’s disease
 • Differences
 – Neuron vs. axon
Degenerative Myelopathy

- Progressive disease in older dogs
 - 8-14 years
- Large breed dogs
 - GSD, Boxer, CBR
 - Mean age of 9 yo
- PWC
 - Mean age of 11 yo.
Degenerative Myelopathy

• Clinical Progression
 ▪ Spectrum of symptoms
 • Proprioceptive ataxia, paraparesis
 – T3-L3 spinal cord segments
 • Progress to non-ambulatory state (6-20 months)
 – LMN paraplegia
 – → tetraplegia
 – → brainstem signs
Degenerative Myelopathy

• Antemortem Diagnostics
 ▪ MRI
 • Diagnosis of exclusion / presumptive diagnosis
 – Normal MRI
 – Cord atrophy
 ▪ CSF
 • Normal
 • High protein
Degenerative Myelopathy

- Genetic test
 - Mizzou
 - OFA
- Samples
 - Cheek swab
 - Whole blood
- Results

G/G – Normal
A/G – Carrier
A/A – Affected
Degenerative Myelopathy

- Treatment?
 - No definitive treatment
 - Supportive care
 - Exercise/physical therapy
 - Vitamin supplementation?
 - Good nutrition
 - Weight control
Degenerative Myelopathy

- **The 4 Questions**
 - Onset?
 - Chronic!
 - Progression?
 - Progressive
 - Symmetry?
 - Often symmetric
 - Painful?
 - No.
Take Home Points

- MRI is the best diagnostic modality to evaluate spinal cord health, determine an accurate prognosis and to plan appropriate therapy.
- Not everything is a disc!!!
References

• Dolera M¹, Malfassi L¹, Bianchi C¹, Carrara N¹, Finesso S¹, Marcarini S¹, Mazza G¹, Pavesi S¹, Sala M¹, Urso G¹,². Frameless stereotactic volumetric modulated arc radiotherapy of brachial plexus tumours in dogs: 10 cases. Br J Radiol. 2017 Jan;90(1069).

References

Any Questions??