• V – Vascular
• I – Infectious / Inflammatory
• T – Trauma
• A – Anomalous
• M – Metabolic
• I – Idiopathic
• N – Neoplasia
• D – Degenerative
Anomalous

- Vertebral malformations
- Cysts / Diverticula
- Cervical spondylomyelopathy (Wobbler)
Vertebral Malformations

• Variety of neurologic symptoms
 ▪ Myelopathy
 ▪ Radiculopathy

• However...
 ▪ VAST majority are incidental findings / clinically insignificant
Vertebral Malformations

- Generally breed-associated
- Exception
 - Mucolipidosis
- Bulldog overrepresented
 - Also...
Vertebral Malformations

• Many different classification systems
 ▪ Stage of development
 • Embryonic
 – Hemivertebrae
 – Wedge vertebrae
 – Butterfly vertebrae
 • Fetal
 – Block vertebrae
 – Articular process hypoplasia
Vertebral Malformations

- Partial unilateral failure of formation (wedge vertebrae)
- Complete unilateral failure of formation (hemivertebra)
- Unilateral failure of segmentation (congenital bar)
- Bilateral failure of segmentation (block vertebra)
Articular Process Hypoplasia

- Hypoplasia or aplasia
- Pugs
Articular Process Hypoplasia

- “Pug Myelopathy”
- Hypoplasia / aplasia of caudal articular facets
 - Thoracolumbar region
- Leads to chronic instability and secondary fibrous band
 - Constrictive myelopathy

Vertebral Malformations

• Diagnostics
 ▪ Radiography
 • Most are easily identified
 ▪ MRI
 • Cross-sectional analysis
 • Spinal cord compression
 • Other abnormalities
 – Disc
 – Cyst / diverticula
Vertebral Malformations

• Treatment
 ▪ Dependent on...
 • Significance
 • Type
 • Number
 • Severity
 • Stability
Vertebral Malformations

• Treatment
 ▪ Medical management
 • Strict confinement
 • NSAIDs vs. steroids
 • Analgesic therapy
 ▪ Surgery
 • Rarely performed...
Vertebral Malformations

• Surgical Management
 ▪ More common to address secondary disease
 • Block vertebrae
 – Disc
 • Hemivertebrae
 – Cyst / diverticula
Vertebral Malformations

• Surgical Management
 ▪ Simple
 • Dorsal laminectomy
 • Hemilaminectomy
 ▪ Complex
 • Requiring stabilization
“Chewy”

• 4 month old Chihuahua mix
• Weak / wobbly in PL since adoption
“Chewy”
“Chewy” MRI
“Chewy” CT

T6-7 T13
“Chewy”
Chewy’s 3D model
Post-op radiographs

Right lateral

VD
Vertebral Malformations

• The 4 Questions
 ▪ Onset?
 • Chronic
 – Months to years
 ▪ Progression?
 • Slowly progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • No

The only disability in life is a bad attitude.
Spinal Arachnoid Diverticula

- Focal dilations of the subarachnoid space
- Formerly known as cysts
- More common in brain
Spinal Arachnoid Diverticula

• Compressive myelopathy
• Most common symptom
 ▪ Proprioceptive ataxia
• Two groups of dogs
 ▪ Cervical
 • Large breed dogs
 – Rottweiler
 ▪ Thoracolumbar***
 • Frenchies and Pugs
Spinal Arachnoid Diverticula

- Corkscrew tail breeds
- Very common to have concurrent disease adjacent to SAD
Spinal Arachnoid Diverticula

- Diagnostics
 - CT / myelogram?
 - MRI!!

- Diagnosis
 - FLAIR

- Also...
 - Cord changes
 - Edema,
 - gliosis
 - Concurrent diseases
“Francisco”
“Francisco”
Spinal Arachnoid Diverticula

- Treatment
 - Medical management
 - Prednisone (low dose)
 - Omeprazole
 - +/- furosemide, acetazolamide
 - Surgery
 - Laminectomy
 - Durotomy
 - Marsupialization
Spinal Arachnoid Diverticula

- Prognosis
 - Medical therapy
 - Unknown – no studies to date
 - “Guarded”
 - Surgery
 - ~63% - improved
 - ~37% - worsened
Spinal Arachnoid Diverticula

• The 4 Questions
 ▪ Onset?
 • Chronic
 – Months to years
 ▪ Progression?
 • Slowly progressive
 ▪ Symmetry?
 • Usually symmetric
 ▪ Painful?
 • No
Cervical Spondylomyelopathy

• “Wobbler syndrome”
• Condition of large and giant breed dogs
• Static or dynamic compression
 ▪ Spinal cord
 ▪ Nerve roots
 ▪ → pain and spinal cord dysfunction
• Causes
 ▪ Genetic, congenital, conformational, nutritional
Cervical Spondylomyelopathy

• Breeds
 - Great Dane, Doberman, Basset

• Pathogenesis
 - Multifactorial
 - Canal stenosis from disc, ligament, joint capsule, bone, vertebral instability, among others...
Cervical Spondylomyelopathy

- Two forms
 - Doberman
 - Older dogs (6.8 years)
 - Caudal cervical
 - Disc-associated
 - Great Dane
 - Younger dogs (3.8 years)
 - Cranial-to-mid cervical
 - Osseous-associated
Cervical Spondylomyelopathy

- Basset hound
 - Unique form of disease
 - JVIM, 2012, De Decker et. Al
 - Dorsal lamina & spinous process hypertrophy
 - leads to ligamentum flavum hypertrophy
Basset Spondylomyelopathy
Basset Spondylomyelopathy
“George” – 5 mo Basset Hound
Cervical Spondylomyelopathy

• Diagnostics
 ▪ CT / Myelography
 ▪ MRI
 • Diagnosis
 • Dynamic vs. static
 • Cord changes***
“Fitz” – 2 yo MN Great Dane

C2-C3

C5-C6
Cervical Spondylomyelopathy

- Treatment

 - Medical
 - Prednisone
 - Gabapentin
 - Controlled exercise

 - Surgery
 - Dependent on type, extent, severity
 - Ventral slot, dorsal laminectomy
 - +/- stabilization
 - Disc replacement??

Cervical Spondylomyelopathy

- **The 4 Questions**
 - **Onset?**
 - Chronic, Acute-on-Chronic
 - **Progression?**
 - Progressive
 - **Symmetry?**
 - Usually symmetric
 - **Painful?**
 - Osseous-associated
 - 50/50
 - Disc-associated
 - Yes!
- V – Vascular
- I – Infectious / Inflammatory
- T – Trauma
- A – Anomalous
- M – Metabolic
- I – Idiopathic
- N – Neoplasia
- D – Degenerative
Neoplasia

• Primary
 ▪ Arising from the spinal cord or meninges

• Secondary
 ▪ Adjacent

- Intramedullary
- Intradural, Extramedullary
- Extradural
Primary SC Neoplasia

• Can be broken into 2 categories
 ▪ Intramedullary
 ▪ Intradural, extramedullary

http://sevneurology.com/lupa-spinal-tumor/
Intramedullary SC Neoplasia

- Uncommon
 - ~15% of spinal cord tumors
- 2/3 are primary
 - Neuroepithelial
 - Glial cells
 - Ependyma
- 1/3 are secondary
 - Metastatic
Intramedullary SC Neoplasia

- **Primary tumors**
 - More common...
 - Young dogs
 - Cervical spinal cord

- **Secondary**
 - More common...
 - Older dogs
 - Thoracolumbar spinal cord
Intramedullary SC Neoplasia

- Primary tumors
 - Mean age is 5.9 years
 - Most common is ependymoma
 - Followed by
 - Astrocytoma
 - Oligodendroglioma
Intramedullary SC Neoplasia

- Secondary / metastatic tumors
 - Mean age is 10.8 years
 - Most common:
 - Hemangiosarcoma
 - TCC
 - Prostatic carcinoma
 - LSA?
Intramedullary Neoplasia

• The 4 Questions
 ▪ Onset?
 • Acute-to-chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Often symmetric
 ▪ Painful?
 • Nope!!
Intradural, Extramedullary

Intradural, Extramedullary

- Meningioma
 - Most common in dogs
 - Arises from arachnoid granulation of meninges
 - Locations
 - Cervical most common
 - Grades
 - I-III
 - Types
 - Numerous!!
Transitional Meningioma

Meningothelial Meningioma

Angiomatous Meningioma

Microcystic Meningioma
Meningioma

• Treatment
 ▪ Palliative care
 ▪ Oral chemotherapy
 • Hydroxyurea
 ▪ Surgery alone
 • 1410-1440 days (Levy et. al 1997)
 • 19 months (Petersen et. al 2008)
 ▪ Surgery + Radiation
 • ??? Likely longer...
Intradural, Extramedullary

- **Nerve sheath tumors**
 - **Types**
 - Schwannomas
 - Neurofibromas
 - Neurofibrosarcomas
Nerve Sheath Tumors

Treatment

- Palliative care
- Radiation
 - 371 ± 30 days
- Surgery alone
 - 6-9 months
- Surgery + Radiation
 - ??? Likely longer...
Nephroblastoma

- “Thoracolumbar tumor of young dogs”
- Embryonal tumors of the kidneys
- Neoplastic transformation of blastemal cells
 - Retroperitoneal → primary renal tumor
 - Within dura → spinal tumor
- T10-L3
- GSD, Golden retrievers
Nephroblastoma

- **Age at onset**
 - 5-48 months
 - Median 14 months
- **Progressive symptoms**
 - T3-L3
 - Paraparesis / ataxia to paraplegia
Nephroblastoma
Nephroblastoma

• **Treatment**
 - Medical management
 - Surgery
 - Dorsal / hemilaminectomy
 - Durotomy

• **Prognosis**
 - Poor
 - MST 30 days in all dogs
 - Surgical resection
 - MST 70.5 days
Extradural Tumors

• Vertebral tumors
 - Osteosarcoma
 - Fibrosarcoma
 - Chondrosarcoma
 - Multiple myeloma
 - Lymphoma
 - Metastatic...
Extradural Tumors

- Other sites
 - Soft tissue
 - Abdominal
 - Retroperitoneal
 - Esophageal
ID-EM and Extradural Tumors

• The 4 Questions
 ▪ Onset?
 • Acute-to-chronic
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • ED → Symmetric
 • ID-EM → Asymmetric
 ▪ Painful?
 • Most are...
 – Meninges, nerve, muscle
- V – Vascular
- I – Infectious / Inflammatory
- T – Trauma
- A – Anomalous
- M – Metabolic
- I – Idiopathic
- N – Neoplasia
- D – Degenerative
Degenerative

- Intervertebral disc disease (IVDD)
- Degenerative myelopathy (DM)
Max,
7 yr, MN Dachshund
Max – The Situation

• 2 days ago – sudden onset not walking, painful
• 1 day ago – pcDVM - paralyzed and no deep pain
• Your exam – quite the same

• Diagnosis ? Prognosis?
Max – The truth

• Came in through ER (~8PM)
 • Plegic, DPP (NEGATIVE)
• Advised to wait til AM to have MRI

• 8AM
 • Exam unchanged.
Outcome

• Left hemilaminectomy at T12-T13 with removal of massive amount of paste-like disc

• Grossly normal spinal cord

• Weakly ambulatory at discharge 2 ½ days later
Deep Pain Negative & Hemilaminectomy

<table>
<thead>
<tr>
<th>T2 Signal Changes</th>
<th>Number Recovered</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None noted</td>
<td>13/13</td>
<td>100%</td>
</tr>
<tr>
<td>< 3x length L2</td>
<td>4/6</td>
<td>66%</td>
</tr>
<tr>
<td>> 3 x length L2</td>
<td>1/10</td>
<td>10%</td>
</tr>
<tr>
<td>Totals</td>
<td>18/29</td>
<td>62%</td>
</tr>
</tbody>
</table>

Deep Pain Positive & Hemilaminectomy

<table>
<thead>
<tr>
<th>T2 Signal Changes</th>
<th>Number Recovered</th>
<th>Success Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>None noted</td>
<td>31/31</td>
<td>100%</td>
</tr>
<tr>
<td>< 3x length L2</td>
<td>11/12</td>
<td>92%</td>
</tr>
<tr>
<td>> 3 x length L2</td>
<td>2/5</td>
<td>40%</td>
</tr>
<tr>
<td>Totals</td>
<td>44/48</td>
<td>92%</td>
</tr>
</tbody>
</table>

- MRI findings best predictor of outcome in paraplegic dogs
- Generally success rates are 92% and 62%, in DPP+, DPP – respectively

MRI as predictor of outcome

- Allows for evaluation of SC health
- Without MRI
 - Prognoses range from 10-100%
 - “50/50”
- MRI allows for...
 - Establishment of diagnosis
 - Accurate prognosis!
Why wait??

• Our beliefs
 ▪ Diagnostic and prognostic value of MRI is worth the wait
 ▪ CT / myelogram??
 ▪ Little harm in waiting

• 2 components of injury caused by disc rupture
 ▪ 1) Concussive internal injury sustained at moment of impact
 • Most important / fate is sealed at time of rupture
 ▪ 2) Ongoing compression
Why MRI for Type I Disc Disease?

• MRI consistently superior to myelography for determining lesion localization and lateralization (Bos)

• Correlation between MRI and surgical findings is 100% for lesion localization and lateralization (Besalti, Naude)

• Superior to deep pain status in determining outcome in paraplegic dogs

Bos AS. University of Guelph. 2008: 113-49
No harm in waiting...

- JAVMA 2016
 - Jeffery et. al
- Goals of study
 - Identify factors associated with recovery of locomotion
- 78 dogs that underwent spinal surgery for IVDD
 - Iowa State, TAMU, UK
• Results
 ▪ No evidence that prognosis for recovery of ambulation was related to time from onset of non-ambulatory state or loss of DPP

• Conclusion
 ▪ “Immediacy of surgical treatment had no apparent association with outcome”
 ▪ Rather, the prognosis strongly influenced by nature of *initiating injury*
Further Evidence...

• JAVMA 2003
 - *Olby et. al*
 - Study on spinal trauma
 • Including IVDD, HBC, etc.
 - Outcome was not associated with duration of paraplegia
 - Additionally, 0% of DPP(-) dogs recovered that had suffered “trauma” (fracture, subluxation, etc.)
Further Evidence...

- **JSAP 1999**
 - *Scott, McKee*
 - No statistical significance to show duration of loss of DPP impacted the prognosis

- **JAVMA 2005**
 - *Ito et. al*
 - Duration of clinical signs
 - Not associated with outcome
However....

• We do still recommend prompt establishment of diagnosis and prognosis

• Surgical intervention (if indicated)
 ▪ Sooner rather than later.
Type I Disc Disease
Type I - Breeds

- Overall prevalence = 2% (Bray, 1998)
- Dachshunds (20%), Pekingese, beagle, cocker
Type I – Age

- Chondrodystrophic: 3-7 years
- Non-chondrodystrophic: 6-8 years
 - Large breed dogs: mixed, German Shepherd, Labrador, Rottweiler, Dalmatian, Doberman

[Images of dogs]
Surgery vs. Medical Management?

- In general with an isolated disc rupture...
 - Surgery
 - Prognosis with surgery is >95%
 - Quicker recovery
 - Low recurrence with fenestration
 - ~8%
 - Medical management
 - Fair prognosis
 - Recurrence rates
 - 30-50%
Medical

- What are we trying to accomplish?
- Rest is key!!!!
 - All medically managed cases will be more likely to fail if not rested.
- So, rest (not medication) is more important!
NSAIDS > Steroids

- NSAID therapy associated with higher satisfaction (better pain control, fewer side effects) via questionnaire (Levine)
- Administration of steroid is associated with higher rate of GI and urinary complications causing increased hospital stay
- NSAIDS lower recurrence rate than prednisone (Mann)
- Steroids impair healing (annulus)

Medical

• My preference
 ▪ NSAID
 • Meloxicam, Carprofen
 ▪ Gabapentin
 ▪ Tramadol
 ▪ Muscle relaxer

• Other
 ▪ Urinary status
Surgery

• Best if done sooner...
• If delayed
 ▪ >2 weeks
 ▪ Prognosis could worsen
 ▪ Why?
 • Disc material analogy
 • If delayed...
 – Adhered to dura, vessels
 – More challenging
 – More dangerous
Type 1 Disc Summary

- Not as time sensitive as once thought.
 - Down ≠ Down n’ Out
- Recommend referral in all dogs with suspected disc disease
 - Establish diagnosis and PROGNOSIS
- Educate owners of risks associated with medical management
 - Recurrence
 - Surgery for chronic discs
Type 1 Disc

- **The 4 Questions**
 - **Onset?**
 - Peracute-to-acute
 - **Progression?**
 - Progressive
 - **Symmetry?**
 - Often subtly asymmetric
 - **Painful?**
 - Yes!

Doxycycline
Disc Disease – Type 2

- **Signalment**
 - Large breed dogs
 - 6-8 years
 - GSD, Lab, Golden
Disease Physiology

- Disc degeneration
- Fibrous form of metaplasia
 - nucleus pulposus replaced with fibrocartilage
 - weakening of the dorsal annulus
 - protrusion, bulging of annulus
Type 2 - Signs / Progression

- Lumbosacral (L7-S1) disc protrusions
 - Slow to rise / sit
 - Paraparesis
 - Poor reflexes
 - Incontinence
 - Tail abnormalities
 - Pain

- Low cervical disc protrusions (Disc associated Wobbler’s syndrome or DAWS)
 - Tetraparesis
 - Tetra-ataxia
 - Pain
Surgery and L7-S1 Type II Disc

- Dorsal laminectomy with fenestration
- 131 cases, GSD, painful / reluctant to jump, rise, climb, 93% improved, 17% recurrence rate (Danielsson)
- 69 cases, various grades, 78% good outcome (De Risio)

- Urinary or fecal incontinence has a worse prognosis
- Chronic urinary incontinence predicts poor outcome

DO NOT confuse with orthopedic disease and wait to address the problem until incontinent

Type 2 Disc

- **The 4 Questions**
 - **Onset?**
 - Chronic
 - **Progression?**
 - Progressive
 - **Symmetry?**
 - Usually symmetric
 - **Painful?**
 - Yes
IVDD in Cats??

- Yes!
- Far less common
- Older
- Lumbar disc disease
 - L4-L5
- Type 1 > Type 2
- Outcome similar to dogs
“Amy” – 11 yo FS Balinese
Degenerative Myelopathy

• First described in 1973
 ▪ Non-specific degeneration
• Most dogs in initial reports were GSD
• However, common in several other breeds
 ▪ Overall prevalence of 0.19%
Degenerative Myelopathy

- Cause
 - Mutation in superoxide dismutase 1 gene
 - SOD1
 - Antioxidant / free radical scavenger
 - Amyotrophic lateral sclerosis
 - ALS / Lou Gehrig’s disease
 - Differences
 - Neuron vs. axon
Degenerative Myelopathy

- Progressive disease in older dogs
 - 8-14 years
- Large breed dogs
 - GSD, Boxer, CBR
 - Mean age of 9 yo
- PWC
 - Mean age of 11 yo.
Degenerative Myelopathy

- Clinical Progression
 - Spectrum of symptoms
 - Proprioceptive ataxia, paraparesis
 - T3-L3 spinal cord segments
 - Progress to non-ambulatory state (6-20 months)
 - LMN paraplegia
 - → tetraplegia
 - → brainstem signs
Degenerative Myelopathy

- Antemortem Diagnostics
 - MRI
 - Diagnosis of exclusion / presumptive diagnosis
 - Normal MRI
 - Cord atrophy
 - CSF
 - Normal
 - High protein
Degenerative Myelopathy

• Genetic test
 - Mizzou
 - OFA

• Samples
 - Cheek swab
 - Whole blood

• Results

G/G – Normal
A/G – Carrier
A/A – Affected
Degenerative Myelopathy

• Treatment?
 ▪ No definitive treatment
 ▪ Supportive care
 • Exercise/physical therapy
 • Vitamin supplementation?
 ▪ Good nutrition
 ▪ Weight control
Degenerative Myelopathy

• The 4 Questions
 ▪ Onset?
 • Chronic!
 ▪ Progression?
 • Progressive
 ▪ Symmetry?
 • Often symmetric
 ▪ Painful?
 • No.
Take Home Points

• MRI is the best diagnostic modality to evaluate spinal cord health, determine an accurate **prognosis** and to plan appropriate therapy

• Not everything is a disc!!!
References

References

Any Questions??